
1
1

The OpenMP* Common Core:
A hands on exploration

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Alice Koniges and Yun (Helen) He
LBL

AEKoniges@lbl.gov, yhe@lbl.gov	

The first version of the “Common Core” slides were created by Tim
Mattson, Intel Corp.

Tim Mattson
Intel

(by proxy)

2

Tim’s Rules for a Great Learning
Experience

• Our plan for the morning .. Active learning!
– We will mix short lectures with short exercises.
– You will use your laptop to connect to a multiprocessor

server.
• Please follow these simple rules
– Do the exercises that we assign and then change things

around and experiment.
– Embrace active learning!

– Don’t cheat: Do Not look at the solutions before you
complete an exercise … even if you get really frustrated.

3

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Synchronization
•  Parallel Loops
•  Data environment
•  Memory model

4

OpenMP* overview:

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTER C$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded
Applications

§ A set of compiler directives and library routines for
parallel application programmers

§ Greatly simplifies writing multi-threaded (MT) programs
in Fortran, C and C++

§ Standardizes established SMP practice + vectorization and
heterogeneous device programming

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

The growth of complexity in OpenMP
•  OpenMP started out in 1997 as a simple interface for the application

programmers more versed in their area of science than computer science.

•  The complexity has grown considerably over the years!

5

0

50

100

150

200

250

300

350

1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

2.5

2.0 2.0
1.0 1.0 1.1

4.5

4.0

3.1
3.0

Merged C/C++ and Fortran spec

C/C++ spec

Fortran spec

Page counts (not counting front matter, appendices or index) for versions of OpenMP

year

Page counts (spec only)

The complexity of the full spec is overwhelming, so we focus on the 16 constructs most OpenMP
programmers restrict themselves to … the so called “OpenMP Common Core”

Resources

•  We can only give an overview today
– We won’t cover all features

•  Lots of information available at ARB’s website
– Specifications, technical reports, summary cards for downloading
– Tutorials and publications; links to other tutorials; tools and compilers

•  Tutorials also at:
– Supercomputing conferences
– Annual OpenMPCon, IWOMP workshop
– Some user sites, e.g. NERSC

http://www.openmp.org

7

OpenMP basic definitions: Basic Solution stack

OpenMP Runtime library

OS/system support for shared memory and threading

S
ys

te
m

 la
ye

r

Directives,
Compiler

OpenMP library Environment
variables P

ro
g.

La

ye
r

Application

End User

U
se

r l
ay

er

Shared Address Space

Proc3 Proc2 Proc1 ProcN

H
W

8

Where Does OpenMP Run?

Supported (since OpenMP 4.0)
with target, teams, distribute,

and other constructs

Target Device: Intel® Xeon Phi™ coprocessor

Host

Target Device: GPU
OpenMP 4.5

9

How Does OpenMP Work?

•  Teams of OpenMP threads are created to perform the
computation in a code
– Work is divided among the threads, which run on the different cores
– The threads collaborate by sharing variables
– Threads synchronize to order accesses and prevent data corruption
– Structured programming is encouraged to reduce likelihood of bugs

•  Most Fortran/C/C++ compilers implement OpenMP
– Use compiler “flag”, sometimes a specific optimization level

•  Alternatives:
– MPI
– POSIX thread library is lower level
– Automatic parallelization is higher level (user does nothing)

q  But usually successful on simple codes only

10

int	main(int	argc,	char	*argv[])	{	
		#pragma	omp	parallel		
		{	
				int	ID	=	omp_get_thread_num();	
				printf("hello	from	thread	%d\n",	ID);	
		}	
		return	0;	
}		

Programming in Pthreads vs. OpenMP

10

#include	<pthread.h>	
#define	DEFAULT_NUM_THREADS	4	
		
/*	encapsulate	multiple	args	to	a	thread	*/	
typedef	struct	args	{	
				int	id;								/*	this	thread's	number	*/	
}	args_t;	
		
/*	function	that	is	run	inside	each	thread	*/	
void	*do_hello_world(void	*arg)	
{	
				args_t	*ap	=	(args_t	*)	arg;	/*	unpack	incoming	args	*/	
				printf("Hello	from	thread	%d\n",	ap->id);				/*	ACTUAL	WORK	*/	
				return	NULL;	
}
	
int	main(int	argc,	char	*argv[])	
{	
				int	i,	num_threads	=	DEFAULT_NUM_THREADS;	
				pthread_t	*thread_pool;	
				args_t	*thread_args;	
		
				if	(argc	>	1)	{	
								num_threads	=	atoi(argv[1]);	
								if	(num_threads	<	0)	{	
												num_threads	=	DEFAULT_NUM_THREADS;	
								}	
				}	
				thread_pool	=	(pthread_t	*)	malloc(num_threads	*							
																																							sizeof(*thread_pool));	
				thread_args	=	(args_t	*)				malloc(num_threads	*		
																																							sizeof(*thread_args));	
				/*	create	and	run	threads:	pass	id	of	thread	to	each	*/	
				for	(i	=	0;	i	<	num_threads;	i	+=	1)	{	
								thread_args[i].id	=	i;	
								pthread_create(&thread_pool[i],	NULL,	do_hello_world,	
																							(void	*)	&thread_args[i]);	
				}	
				/*	wait	for	all	threads	to	finish	*/	
				for	(i	=	0;	i	<	num_threads;	i	+=	1)	{	
								pthread_join(thread_pool[i],	NULL);	
				}	
				free(thread_args);	
				free(thread_pool);	
				return	0;	
} 	

11

What Does the User Have to Do?

•  Starting point is most often MPI or sequential program
code

•  Application developer must decide how the work can be
divided up among multiple threads
–  Identify parallelism and needed synchronization
– Getting this right is the user’s responsibility!
–  Insert OpenMP constructs that represent the strategy

•  Getting good performance requires an understanding of
implications of chosen strategy
– Translation introduces overheads
– Data access pattern might affect performance

•  Sometimes, non-trivial rewriting of code is needed to
accomplish desired results

User makes strategic decisions; compiler figures out details

12

OpenMP Usage

OpenMP
Source

Sequential
Program

Parallel
Program

OpenMP
compiler

sequential
compiler

Info on compiler used in training

Compiler Name	 Compiler
Version	 OpenMP version	 OpenMP flag	 C/C++/Fortran compiler	

GNU Compiler Collection (gcc)
[cori,	bluewaters,	Edison,	stampede	2]	 7.1.0	 4.5	 -fopenmp	 gcc, g++, gfortran	

Intel Compilers
[cori,	bluewaters,	Edison,	stampede	2]	 18.0.1	 4.5	 -qopenmp	 icc, icpc, ifort	

Fortran/C/C++
compiler

13

OpenMP basic syntax
•  Most of the constructs in OpenMP are compiler directives.

#pragma omp construct [clause [clause]…]
– Example

#pragma omp parallel num_threads(4)

•  Function prototypes and types in the file:
#include <omp.h>
use omp_lib

•  Most OpenMP* constructs apply to a “structured block”.
– Structured block: a block of one or more statements with

one point of entry at the top and one point of exit at the
bottom.
– It’s OK to have an exit() within the structured block.

14

Exercise, Part A: Hello world
Verify that your environment works
•  Write a program that prints “hello world”.

#include<stdio.h>
int main()
{

 printf(“ hello ”);
 printf(“ world \n”);

}

% cp –r /project/projectdirs/training/OpenMP_Feb2018 .
Compile on Login Nodes, grab a node, execute ./a.out
% cc –qopenmp mycode.c or % ftn –qopenmp mycode.f
% salloc -q interactive -C knl,quad,cache -N 1 –t 1:00:00
% salloc --reservation=omp_hsw -C haswell -N 1 -t 1:00:00
or
% salloc --reservation=omp_knl -C knl,quad,cachel -N 1 -t 1:00:00

15

Exercise, Part B: Hello world
Verify that your OpenMP environment works
•  Write a multithreaded program that prints “hello world”.

#include <stdio.h>
int main()
{

 printf(“ hello ”);
 printf(“ world \n”);

}

Switches for compiling and linking

gcc –fopenmp Gnu (Linux, OSX)

pgcc -mp pgi PGI (Linux)

icl /Qopenmp Intel (windows)

icc –fopenmp Intel (Linux, OSX)

#pragma omp parallel

{

}

#include <omp.h>

}

16

Solution
A multi-threaded “Hello world” program

•  Write a multithreaded program where each thread prints “hello world”.

#include <omp.h>
#include <stdio.h>
int main()
{

#pragma omp parallel
 {

 printf(“ hello ”);
 printf(“ world \n”);
 }
}

Sample Output:
hello hello world

world

hello hello world

world

OpenMP include file

Parallel region with
default number of threads

End of the Parallel region

The statements are interleaved based on how the operating schedules the threads

17

Solution
A multi-threaded “Hello world” program

•  Write a multithreaded program where each thread prints “hello world”.

#include <omp.h>
#include <stdio.h>
int main()
{

#pragma omp parallel
 {

 int ID = omp_get_thread_num();
 printf(“ hello(%d) ”, ID);
 printf(“ world(%d) \n”, ID);
 }
}

Sample Output:
hello(1) hello(0) world(1)

world(0)

hello(3) hello(2) world(3)

world(2)

OpenMP include file

Parallel region with
default number of threads

End of the Parallel region

The statements are interleaved based on how the operating schedules the threads

Runtime library
function to return a
thread ID

18

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Synchronization
•  Parallel Loops
•  Data environment
•  Memory model
•  Irregular Parallelism and tasks
•  Recap
•  Beyond the common core:
– Worksharing revisited
– Synchronization: More than you ever wanted to know
– Thread private data

19

OpenMP programming model:

Fork-Join Parallelism:
u Master thread spawns a team of threads as needed.

u Parallelism added incrementally until performance goals are met,
i.e., the sequential program evolves into a parallel program.

Parallel Regions
Master
Thread
in red

A Nested
Parallel
region

Sequential Parts

20

Thread creation: Parallel regions

•  You create threads in OpenMP* with the parallel construct.
•  For example, To create a 4 thread Parallel region:

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

 int ID = omp_get_thread_num();
 pooh(ID,A);
}

l Each thread calls pooh(ID,A) for ID = 0 to 3!

Each thread
executes a
copy of the
code within

the
structured

block

Runtime function to
request a certain
number of threads

Runtime function
returning a thread ID

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

21

Thread creation: Parallel regions example

•  Each thread executes the
same code redundantly.

	double A[1000];
omp_set_num_threads(4);
 #pragma omp parallel
{

 int ID = omp_get_thread_num();
 pooh(ID, A);
}
 printf(“all done\n”); omp_set_num_threads(4)

pooh(1,A) pooh(2,A) pooh(3,A)

printf(“all done\n”);

pooh(0,A)

double A[1000];

A single
copy of A is

shared
between all

threads.

Threads wait here for all threads to finish
before proceeding (i.e., a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

22

Thread creation: How many threads did
you actually get?
•  You create a team threads in OpenMP* with the parallel construct.
•  You can request a number of threads with omp_set_num_threads()
•  But is the number of threads requested the number you actually get?
–  NO! An implementation can silently decide to give you a team with fewer threads.
–  Once a team of threads is established … the system will not reduce the size of the team.

double A[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

 int ID = omp_get_thread_num();

 int nthrds = omp_get_num_threads();
 pooh(ID,A);
}

l  Each thread calls pooh(ID,A) for ID = 0 to nthrds-1!

Each thread
executes a
copy of the
code within

the
structured

block

Runtime function to
request a certain

number of threads

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

Runtime function to
return actual

number of threads
in the team

Internal control variables & the number of threads
•  There are a few ways to control the number of threads.
– omp_set_num_threads(4)

•  What does omp_set_num_threads() actually do?
–  It resets an “internal control variable” the system queries to select the

default number of threads to request on subsequent parallel constructs.

•  Is there an easier way to change this internal control variable …
perhaps one that doesn’t require re-compilation? Yes.
– When an OpenMP program starts up, it queries an environment variable

OMP_NUM_THREADS and sets the appropriate internal control variable
to the value of OMP_NUM_THREADS

•  For example, to set the initial, default number of threads to
request in OpenMP from my apple laptop

> export OMP_NUM_THREADS=12

23

Performance Tips

•  Experiment to find the best number of threads on your system
•  Put as much code as possible inside parallel regions
– Amdahl’s law: If 1/s of the program is sequential, then you cannot

ever get a speedup better than s
– So if 1% of a program is serial, speedup is limited to 100, no matter

how many processors it is computed on
•  Have large parallel regions
– Minimize overheads: starting and stopping threads, executing

barriers, moving data into cache
– Directives can be “orphaned”; procedure calls inside regions are fine

•  Run-time routines are your friend
– Usually very efficient and allow maximum control over thread behavior

•  Barriers are expensive
– With large numbers of threads, they can be slow
– Depends in part on HW and on implementation quality
– Some threads might have to wait a long time if load not balanced

24

25

An interesting problem to play with
Numerical integration

∫ 	4.0
(1+x2) dx = π

0

1

∑ F(xi)Δx ≈ π
i = 0

N

Mathematically, we know that:

We can approximate the integral as a
sum of rectangles:

Where each rectangle has width Δx and
height F(xi) at the middle of interval i.

F(
x)

 =
 4

.0
/(1

+x
2)

4.0

2.0

1.0
X 0.0

26

Serial PI program

static long num_steps = 100000;
double step;
int main ()
{ int i; double x, pi, sum = 0.0;

 step = 1.0/(double) num_steps;

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

}

See OMP_exercises/pi.c

27

Serial PI program

#include <omp.h>
static long num_steps = 100000;
double step;
int main ()
{ int i; double x, pi, sum = 0.0, tdata;

 step = 1.0/(double) num_steps;
 double tdata = omp_get_wtime();

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 pi = step * sum;

 tdata = omp_get_wtime() - tdata;
 printf(“ pi = %f in %f secs\n”,pi, tdata);
}

See OMP_exercises/pi.c

The library routine
get_omp_wtime() is

used to find the
elapsed “wall time”
for blocks of code

28

Exercise: the parallel Pi program
•  Create a parallel version of the pi program using a parallel

construct:
 #pragma omp parallel.
•  Pay close attention to shared versus private variables.
•  In addition to a parallel construct, you will need the runtime

library routines
– int omp_get_num_threads();
– int omp_get_thread_num();
– double omp_get_wtime();
– omp_set_num_threads(); Time in Seconds since a

fixed point in the past

Thread ID or rank

Number of threads in the team

Request a number of
threads in the team

29

Hints: the Parallel Pi program
•  Use a parallel construct:
 #pragma omp parallel

•  The challenge is to:
– divide loop iterations between threads (use the thread ID and the

number of threads).
– Create an accumulator for each thread to hold partial sums that you

can later combine to generate the global sum.

•  In addition to a parallel construct, you will need the runtime
library routines
–  int omp_set_num_threads();
–  int omp_get_num_threads();
–  int omp_get_thread_num();
– double omp_get_wtime();

Results*

30
*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

threads 1st
SPMD*

1 1.86

2 1.03

3 1.08

4 0.97

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

*SPMD: Single Program Multiple Data

31

Why such poor scaling? False sharing
•  If independent data elements happen to sit on the same cache line, each

update will cause the cache lines to “slosh back and forth” between threads
… This is called “false sharing”.

•  If you promote scalars to an array to support creation of an SPMD
program, the array elements are contiguous in memory and hence share
cache lines … Results in poor scalability.

•  Solution: Pad arrays so elements you use are on distinct cache lines.

Sum[0] Sum[1] Sum[2] Sum[3] Sum[0] Sum[1] Sum[2] Sum[3]
Core 0 Core 1

L1 $ lines L1 $ lines

HW thrd. 0 HW thrd. 1 HW thrd. 2 HW thrd. 3

Shared last level cache and connection to I/O and DRAM

32

#include <omp.h>
static long num_steps = 100000; double step;
#define PAD 8 // assume 64 byte L1 cache line size
#define NUM_THREADS 2
void main ()
{ int i, nthreads; double pi, sum[NUM_THREADS][PAD];

 step = 1.0/(double) num_steps;
 omp_set_num_threads(NUM_THREADS);

 #pragma omp parallel
 { int i, id,nthrds;
 double x;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;

 for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 sum[id][0] += 4.0/(1.0+x*x);
 }

 }
 for(i=0, pi=0.0;i<nthreads;i++)pi += sum[i][0] * step;

}

Example: Eliminate false sharing by padding the sum array

Pad the array so
each sum value is

in a different
cache line

Results*: pi program padded accumulator

33

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

1st
SPMD
padded

1 1.86 1.86

2 1.03 1.01

3 1.08 0.69

4 0.97 0.53

34

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Quantifying Performance and Amdahl’s law
•  Synchronization
•  Parallel Loops
•  Data environment
•  Memory model
•  Irregular Parallelism and tasks
•  Recap
•  Beyond the common core:
– Worksharing revisited
– Synchronization: More than you ever wanted to know
– Threadprivate data

35

Synchronization

•  High level synchronization included in the common core
(the full OpenMP specification has MANY more):
– critical
– barrier

Synchronization is used to
impose order constraints and
to protect access to shared
data

36

Synchronization: critical
•  Mutual exclusion: Only one thread at a time can enter a

critical region.

float res;

#pragma omp parallel

{ float B; int i, id, nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 for(i=id;i<niters;i+=nthrds){

 B = big_job(i);

#pragma omp critical
 res += consume (B);

 }
}

Threads wait
their turn – only
one at a time
calls consume()

37

Synchronization: barrier
•  Barrier: a point in a program all threads must reach before any threads are

allowed to proceed.
•  It is a “stand alone” pragma meaning it is not associated with user code … it

is an executable statement.
double Arr[8], Brr[8]; int numthrds;

omp_set_num_threads(8)

#pragma omp parallel

{ int id, nthrds;

 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();

 if (id==0) numthrds = nthrds;

 Arr[id] = big_ugly_calc(id, nthrds);

#pragma omp barrier
 Brr[id] = really_big_and_ugly(id, nthrds, A);
}

Threads
wait until all
threads hit
the barrier.
Then they
can go on.

38

Exercise

•  In your first Pi program, you probably used an array to create
space for each thread to store its partial sum.

•  If array elements happen to share a cache line, this leads to
false sharing.

– Non-shared data in the same cache line so each update invalidates the
cache line … in essence “sloshing independent data” back and forth
between threads.

•  Modify your “pi program” to avoid false sharing due to the
partial sum array.

Pi program with false sharing*

39
*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

threads 1st
SPMD

1 1.86

2 1.03

3 1.08

4 0.97

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

Recall that promoting sum to an
array made the coding easy, but led
to false sharing and poor
performance.

40

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{

 int i, id, nthrds; double x, sum;
 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;

 for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
 x = (i+0.5)*step;
 sum += 4.0/(1.0+x*x);
 }

 #pragma omp critical
 pi += sum * step;

}
}

Example: Using a critical section to remove impact of false sharing

Sum goes “out of scope” beyond the parallel
region … so you must sum it in here. Must
protect summation into pi in a critical region so
updates don’t conflict

No array, so
no false
sharing.

Create a scalar local
to each thread to
accumulate partial
sums.

Results*: pi program critical section

41

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

1st
SPMD
padded

SPMD
critical

1 1.86 1.86 1.87

2 1.03 1.01 1.00

3 1.08 0.69 0.68

4 0.97 0.53 0.53

42

#include <omp.h>
static long num_steps = 100000; double step;
#define NUM_THREADS 2
void main ()
{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

 omp_set_num_threads(NUM_THREADS);
#pragma omp parallel
{

 int i, id,nthrds; double x;
 id = omp_get_thread_num();

 nthrds = omp_get_num_threads();
 if (id == 0) nthreads = nthrds;

 for (i=id, sum=0.0;i< num_steps; i=i+nthreads){
 x = (i+0.5)*step;

 #pragma omp critical
 pi += 4.0/(1.0+x*x);
 }

}
pi *= step;
}

Example: Using a critical section to remove impact of false sharing

What would happen if
you put the critical
section inside the
loop?

Be careful where you
put a critical section

43

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Quantifying Performance and Amdahl’s law
•  Synchronization
•  Parallel Loops
•  Data environment
•  Memory model
•  Irregular Parallelism and tasks
•  Recap
•  Beyond the common core:
– Worksharing revisited
– Synchronization: More than you ever wanted to know
– Threadprivate data

44

The loop worksharing constructs

•  The loop worksharing construct splits up loop iterations
among the threads in a team

#pragma omp parallel

{ 
#pragma omp for  

 for (I=0;I<N;I++){ 
 NEAT_STUFF(I); 
 } 

}

Loop construct name:

• C/C++: for

• Fortran: do

The loop control index I is made
“private” to each thread by default.

Threads wait here until all
threads are finished with the

parallel loop before any proceed
past the end of the loop

45

Loop worksharing constructs
A motivating example

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
{

 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart = id * N / Nthrds;
 iend = (id+1) * N / Nthrds;
 if (id == Nthrds-1)iend = N;
 for(i=istart;i<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel
#pragma omp for

 for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

46

Loop worksharing constructs:
The schedule clause

•  The schedule clause affects how loop iterations are mapped onto threads
–  schedule(static [,chunk])

–  Deal-out blocks of iterations of size “chunk” to each thread.
–  schedule(dynamic[,chunk])

–  Each thread grabs “chunk” iterations off a queue until all iterations have
been handled.

Schedule Clause When To Use
STATIC Pre-determined and

predictable by the
programmer

DYNAMIC Unpredictable, highly
variable work per
iteration

Least work at
runtime :
scheduling done
at compile-time

Most work at
runtime :
complex
scheduling logic
used at run-time

47

Combined parallel/worksharing construct

• OpenMP shortcut: Put the “parallel” and the
worksharing directive on the same line

 double res[MAX]; int i;
#pragma omp parallel
{
 #pragma omp for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }
}

These are equivalent

 double res[MAX]; int i;
#pragma omp parallel for
 for (i=0;i< MAX; i++) {
 res[i] = huge();
 }

48

Working with loops

•  Basic approach
– Find compute intensive loops
– Make the loop iterations independent ... So they can safely execute in

any order without loop-carried dependencies
– Place the appropriate OpenMP directive and test

 int i, j, A[MAX];
 j = 5;
 for (i=0;i< MAX; i++) {
 j +=2;
 A[i] = big(j);
 }

 int i, A[MAX];
 #pragma omp parallel for
 for (i=0;i< MAX; i++) {
 int j = 5 + 2*(i+1);
 A[i] = big(j);
 } Remove loop

carried
dependence

Note: loop index
“i” is private by
default

49

Reduction

•  We are combining values into a single accumulation variable (ave) …
there is a true dependence between loop iterations that can’t be trivially
removed

•  This is a very common situation … it is called a “reduction”.

•  Support for reduction operations is included in most parallel programming
environments.

 double ave=0.0, A[MAX]; int i;
 for (i=0;i< MAX; i++) {
 ave + = A[i];
 }
 ave = ave/MAX;

•  How do we handle this case?

50

Reduction
•  OpenMP reduction clause:

reduction (op : list)

•  Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized depending

on the “op” (e.g. 0 for “+”).
– Updates occur on the local copy.
– Local copies are reduced into a single value and combined with

the original global value.

•  The variables in “list” must be shared in the enclosing
parallel region.

 double ave=0.0, A[MAX]; int i;
#pragma omp parallel for reduction (+:ave)
 for (i=0;i< MAX; i++) {
 ave + = A[i];
 }
 ave = ave/MAX;

51

OpenMP: Reduction operands/initial-values
•  Many different associative operands can be used with reduction:
•  Initial values are the ones that make sense mathematically.

Operator Initial value
+ 0
* 1
- 0

min Largest pos. number

max Most neg. number

C/C++ only

Operator Initial value
& ~0

| 0

^ 0
&& 1
|| 0

Fortran Only

Operator Initial value
.AND. .true.
.OR. .false.

.NEQV. .false.
.IEOR. 0
.IOR. 0

.IAND. All bits on
.EQV. .true.

52

Exercise: Pi with loops

•  Go back to the serial pi program and parallelize it with a loop
construct

•  Your goal is to minimize the number of changes made to the
serial program.

#pragma omp parallel
#pragma omp for
#pragma omp parallel for
#pragma omp for reduction(op:list)
#pragma omp critical
int omp_get_num_threads();
int omp_get_thread_num();
double omp_get_wtime();

53

Example: Pi with a loop and a reduction
#include <omp.h>
static long num_steps = 100000; double step;
void main ()
{ int i; double x, pi, sum = 0.0;
 step = 1.0/(double) num_steps;
 #pragma omp parallel
 {
 double x;
 #pragma omp for reduction(+:sum)

 for (i=0;i< num_steps; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }

 }
 pi = step * sum;

}

Create a scalar local to each thread to hold
value of x at the center of each interval

Create a team of threads …
without a parallel construct, you’ll
never have more than one thread

Break up loop iterations
and assign them to
threads … setting up a
reduction into sum. Note
… the loop index is local to
a thread by default.

Results*: pi with a loop and a reduction

54

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st
SPMD

1st
SPMD
padded

SPMD
critical

PI Loop

1 1.86 1.86 1.87 1.91

2 1.03 1.01 1.00 1.02

3 1.08 0.69 0.68 0.80

4 0.97 0.53 0.53 0.68

55

The nowait clause
•  Barriers are really expensive. You need to understand when

they are implied and how to skip them when its safe to do so.

double A[big], B[big], C[big];

#pragma omp parallel
{

 int id=omp_get_thread_num();
 A[id] = big_calc1(id);

#pragma omp barrier
#pragma omp for

 for(i=0;i<N;i++){C[i]=big_calc3(i,A);}
#pragma omp for nowait

 for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }
 A[id] = big_calc4(id);

} implicit barrier at the end
of a parallel region

implicit barrier at the end of a for
worksharing construct

no implicit barrier
due to nowait

Limitations of Parallel For / Do

56

To use a for or do construct, loops must be countable.
To parallelize this loop, it is necessary to first count the number of
iterations and then rewrite it as a for loop.
Or we can use tasks. More on this later…

#pragma	omp	parallel	
{	
				…	
				while	(my_pointer	!=	NULL)	{	
								do_independent_work(my_pointer);	
								my_pointer	=	my_pointer->next;	
				}	//	End	of	while	loop	
				…	
}		

Performance Tips

•  Is there enough work to amortize overheads?
– May not be worthwhile for very small loops (if clause can control this)
– Might be overcome by choosing different loop, rewriting loop nest or

collapsing loop nest
•  Best choice of schedule might change with system, problem

size
– Experimentation may be needed

•  Minimize synchronization
– Use nowait where possible

•  Locality
– Most large systems are NUMA
– Be prepared to modify your loop nests
– Change loop order to get better cache behavior

•  If performance is bad, look for false sharing
– We talk about this in part 2 of the tutorial
– Occurs frequently, performance degradation can be catastrophic 57

58

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Quantifying Performance and Amdahl’s law
•  Synchronization
•  Parallel Loops
•  Data environment
•  Memory model
•  Irregular Parallelism and tasks
•  Recap
•  Beyond the common core:
– Worksharing revisited
– Synchronization: More than you ever wanted to know
– Thread private data

OpenMP Memory Model

 •  All threads access the same, globally
shared memory

•  Data can be shared or private
–  Shared – only one instance of data

q  Threads can access data
simultaneously

q  Changes are visible to all threads
–  Not necessarily immediately

–  Private - Each thread has copy of data
q  No other thread can access it
q  Changes only visible to the thread

owning the data
•  OpenMP has relaxed-consistency

shared memory model
–  Threads may have a temporary view of

shared memory that is not consistent with
that of other threads

–  These temporary views are made consistent
at certain places in code

59

60

Data environment:
Default storage attributes

• Shared memory programming model:
– Most variables are shared by default

• Global variables are SHARED among threads
– Fortran: COMMON blocks, SAVE variables, MODULE variables
– C: File scope variables, static
– Both: dynamically allocated memory (ALLOCATE, malloc, new)

• But not everything is shared...
– Stack variables in subprograms(Fortran) or functions(C) called

from parallel regions are PRIVATE
– Automatic variables within a statement block are PRIVATE.

61

 double A[10];
 int main() {

 int index[10];
 #pragma omp parallel

 work(index);
 printf(“%d\n”, index[0]);

 }

extern double A[10];
void work(int *index) {
 double temp[10];
 static int count;
 ...
}

Data sharing: Examples

temp!

A, index, count!

temp! temp!

A, index, count!

A, index and count are
shared by all threads.

temp is local to each
thread

62

Data sharing:
Changing storage attributes

•  One can selectively change storage attributes for constructs
using the following clauses* (note: list is a comma-separated list of variables)

– shared(list)
– private(list)
– firstprivate(list)

•  These can be used on parallel and for constructs … other
than shared which can only be used on a parallel construct

•  Force the programmer to explicitly define storage attributes
– default (none)

These clauses apply to
the OpenMP construct

NOT to the entire region.

default() can be used on
parallel constructs

63

Data sharing: Private clause

void wrong() {
 int tmp = 0;
#pragma omp parallel for private(tmp)
 for (int j = 0; j < 1000; ++j)

 tmp += j;
 printf(“%d\n”, tmp);
}

•  private(var) creates a new local copy of var for each thread.
–  The value of the private copies is uninitialized
–  The value of the original variable is unchanged after the region

tmp was not
initialized

tmp is 0 here

When you need
to reference the
variable tmp that
exists prior to the
construct, we call

it the original
variable.

64

Data sharing: Private clause
When is the original variable valid?

int tmp;
void danger() {
 tmp = 0;
#pragma omp parallel private(tmp)
 work();
 printf(“%d\n”, tmp);
}

•  The original variable’s value is unspecified if it is referenced
outside of the construct
–  Implementations may reference the original variable or a copy ….. a

dangerous programming practice!
– For example, consider what would happen if the compiler inlined

work()?

extern int tmp;
void work() {
 tmp = 5;
}

unspecified which
copy of tmp tmp has unspecified value

Firstprivate clause

•  Variables initialized from a shared variable
•  C++ objects are copy-constructed

65

incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i = 0; i <= MAX; i++) {

 if ((i%2)==0) incr++;
 A[i] = incr;

}

Each thread gets its own copy of
incr with an initial value of 0

66

Data sharing:
A data environment test

•  Consider this example of PRIVATE and FIRSTPRIVATE

•  Are A,B,C private to each thread or shared inside the parallel region?
•  What are their initial values inside and values after the parallel region?

	variables: A = 1,B = 1, C = 1
#pragma omp parallel private(B) firstprivate(C)

Inside this parallel region ...
l  “A” is shared by all threads; equals 1
l  “B” and “C” are private to each thread.

–  B’s initial value is undefined
–  C’s initial value equals 1

Following the parallel region ...
l  B and C revert to their original values of 1
l  A is either 1 or the value it was set to inside the parallel region

67

Data sharing: Default clause
•  default(none): Forces you to define the storage attributes for

variables that appear inside the static extent of the construct … if you fail
the compiler will complain. Good programming practice!

•  You can put the default clause on parallel and parallel + workshare
constructs.

The full OpenMP specification has other versions of the default clause, but they are not
used very often so we skip them in the common core

#include <omp.h>
int main()
{
 int i, j=5; double x=1.0, y=42.0;
 #pragma omp parallel for default(none) reduction(*:x)
 for (i=0;i<N;i++){
 for(j=0; j<3; j++)
 x+= foobar(i, j, y);
 }
 printf(“ x is %f\n”,(float)x);
}

The static extent
is the code in the
compilation unit
that contains the

construct.
The compiler would

complain about j and y,
which is important since

you don’t want j to be
shared

Performance and Correctness Tips

•  There is one version of shared data
– Keeping data shared reduces overall memory consumption

•  Private data is stored locally, so use of private variables can
increase efficiency
– Avoids false sharing
– May make it easier to parallelize loops
– But private data is no longer available after parallel regions ends

•  It is an error if multiple threads update the same variable at
the same time (a data race)

•  It is a good idea to use “default none” while testing code
•  Putting code into a subroutine / function can make it easier

to write code with many private variables
– Local / automatic data in a procedure is private by default

68

69

Exercise: Mandelbrot set area

•  The supplied program (mandel.c) computes the area of a
Mandelbrot set.

•  The program has been parallelized with OpenMP, but we
were lazy and didn’t do it right.

•  Find and fix the errors (hint … the problem is with the data
environment).

•  Once you have a working version, try to optimize the
program.
– Try different schedules on the parallel loop.
– Try different mechanisms to support mutual exclusion … do the

efficiencies change?

The Mandelbrot area program
#include <omp.h>
define NPOINTS 1000
define MXITR 1000
struct d_complex{
 double r; double i;
};
void testpoint(struct d_complex);
struct d_complex c;
int numoutside = 0;

int main(){
 int i, j;
 double area, error, eps = 1.0e-5;
#pragma omp parallel for default(shared) private(c, j) \
 firstpriivate(eps)
 for (i=0; i<NPOINTS; i++) {
 for (j=0; j<NPOINTS; j++) {
 c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
 c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps;
 testpoint(c);
 }
 }
area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-
numoutside)/(double)(NPOINTS*NPOINTS);
 error=area/(double)NPOINTS;
} 70

void testpoint(struct d_complex c){
struct d_complex z;
 int iter;
 double temp;

 z=c;
 for (iter=0; iter<MXITR; iter++){
 temp = (z.r*z.r)-(z.i*z.i)+c.r;
 z.i = z.r*z.i*2+c.i;
 z.r = temp;
 if ((z.r*z.r+z.i*z.i)>4.0) {
 #pragma omp critical
 numoutside++;
 break;
 }
 }
}

•  eps was not initialized
•  Protect updates of numoutside
•  Which value of c does testpoint() see?

Global or private?

71

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Quantifying Performance and Amdahl’s law
•  Synchronization
•  Parallel Loops
•  Data environment
•  Memory model
•  Irregular Parallelism and tasks
•  Recap
•  Beyond the common core:
– Worksharing revisited
– Synchronization: More than you ever wanted to know
– Thread private data

72

OpenMP memory model

l  Multiple copies of data may be present in various levels of cache, or in registers

l  OpenMP supports a shared memory model
l  All threads share an address space, but it can get complicated:

proc1 proc2 proc3 procN

Shared memory

cache1 cache2 cache3 cacheN

a

a

. . .

73

OpenMP and relaxed consistency

•  OpenMP supports a relaxed-consistency
shared memory model
– Threads can maintain a temporary view of shared memory

that is not consistent with that of other threads

– These temporary views are made consistent only at certain
points in the program

– The operation that enforces consistency is called the flush operation

74

Flush operation

•  Defines a sequence point at which a thread is guaranteed to
see a consistent view of memory
– All previous read/writes by this thread have completed and are visible

to other threads
– No subsequent read/writes by this thread have occurred
– A flush operation is analogous to a fence in other shared memory

APIs

75

Flush and synchronization

•  A flush operation is implied by OpenMP synchronizations, e.g.,
– at entry/exit of parallel regions
– at implicit and explicit barriers
– at entry/exit of critical regions
….
(but not at entry to worksharing regions)

This means if you are mixing reads and writes of a variable across multiple threads,
you cannot assume the reading threads see the results of the writes unless:

•  the writing threads follow the writes with a construct that implies a flush.
•  the reading threads preceed the reads with a construct that implies a flush.

This is a rare event … or putting this another way, you should avoid writing code that
depends on ordering reads/writes around flushes.

76

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Synchronization
•  Parallel Loops
•  Data environment
•  Memory model
•  Irregular Parallelism and tasks
•  Recap
•  Beyond the common core:
– Worksharing revisited
– Synchronization: More than you ever wanted to know
– Thread private data
– Thread affinity and data locality

What are tasks?

•  Tasks are independent units of work
•  Tasks are composed of:
–  code to execute
– data to compute with

•  Threads are assigned to perform the
work of each task.
– The thread that encounters the task construct

may execute the task immediately.
– The threads may defer execution until later Serial Parallel

77

What are tasks?

•  The task construct includes a structured
block of code

•  Inside a parallel region, a thread
encountering a task construct will
package up the code block and its data
for execution

•  Tasks can be nested: i.e. a task may
itself generate tasks.

Serial Parallel

A common Pattern is to have one thread create the tasks while the other
threads wait at a barrier and execute the tasks

78

79

Single worksharing Construct

•  The single construct denotes a block of code that is
executed by only one thread (not necessarily the master
thread).

•  A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause).

#pragma omp parallel
{

 do_many_things();
#pragma omp single

 { exchange_boundaries(); }
 do_many_other_things();

}

Task Directive

80

#pragma omp parallel
{
 #pragma omp single
 {
 #pragma omp task
 fred();
 #pragma omp task
 daisy();
 #pragma omp task
 billy();
 }
}

One Thread
packages tasks

Create some threads

Tasks executed by
some thread in some
order

All tasks complete before this barrier is released

#pragma omp task [clauses]

 structured-block

Exercise: Simple tasks
•  Write a program using tasks that will “randomly” generate one of two

strings:
–  I think race cars are fun
–  I think car races are fun

•  Hint: use tasks to print the indeterminate part of the output (i.e. the “race”
or “car” parts).

•  This is called a “Race Condition”. It occurs when the result of a program
depends on how the OS schedules the threads.

•  NOTE: A “data race” is when threads “race to update a shared variable”.
They produce race conditions. Programs containing data races are
undefined (in OpenMP but also ANSI standards C++’11 and beyond).

#pragma omp parallel
#pragma omp task
#pragma omp single

81

Racey cars: solution
#include <stdio.h>
#include <omp.h>
int main()
{ printf("I think");
 #pragma omp parallel
 {
 #pragma omp single
 {
 #pragma omp task
 printf(" car");
 #pragma omp task
 printf(" race");
 }
 }
 printf("s");
 printf(" are fun!\n");
} 82

83

When/where are tasks complete?

•  At thread barriers (explicit or implicit)
– applies to all tasks generated in the current parallel region up to the

barrier

•  At taskwait directive
–  i.e. Wait until all tasks defined in the current task have completed.

 #pragma omp taskwait
– Note: applies only to tasks generated in the current task, not to

“descendants” .

Example

84

#pragma omp parallel
{
 #pragma omp single
 {
 #pragma omp task
 fred();
 #pragma omp task
 daisy();
 #pragma taskwait
 #pragma omp task
 billy();
 }
}

fred() and daisy()
must complete before
billy() starts

85

Linked list traversal

•  Classic linked list traversal
•  Do some work on each item in the list
•  Assume that items can be processed independently
•  Cannot use an OpenMP loop directive

p = listhead ;
while (p) {
 process(p);
 p=next(p) ;
}

86

Parallel linked list traversal

#pragma omp parallel
{
 #pragma omp single
 {
 p = listhead ;
 while (p) {
 #pragma omp task firstprivate(p)
 {
 process (p);
 }
 p=next (p) ;
 }
 }
}

makes a copy of p
when the task is
packaged

Only one thread
packages tasks

Data scoping with tasks
•  Variables can be shared, private or firstprivate with respect to

task

•  These concepts are a little bit different compared with
threads:
–  If a variable is shared on a task construct, the references to it inside

the construct are to the storage with that name at the point where the
task was encountered

–  If a variable is private on a task construct, the references to it inside
the construct are to new uninitialized storage that is created when the
task is executed

–  If a variable is firstprivate on a construct, the references to it inside the
construct are to new storage that is created and initialized with the
value of the existing storage of that name when the task is
encountered

87

88

Data scoping defaults
•  The behavior you want for tasks is usually firstprivate, because the task

may not be executed until later (and variables may have gone out of
scope)
–  Variables that are private when the task construct is encountered are firstprivate by

default
•  Variables that are shared in all constructs starting from the innermost

enclosing parallel construct are shared by default

#pragma omp parallel shared(A) private(B)
{
 ...
#pragma omp task
 {
 int C;
 compute(A, B, C);
 }
}

A is shared
B is firstprivate
C is private

Example: Fibonacci numbers

•  Fn = Fn-1 + Fn-2

•  Inefficient O(n2) recursive
implementation!

int fib (int n)
{
 int x,y;
 if (n < 2) return n;

 x = fib(n-1);
 y = fib (n-2);
 return (x+y);
}

Int main()
{
 int NW = 5000;
 fib(NW);
}

89

Parallel Fibonacci

90

•  Binary tree of tasks

•  Traversed using a recursive
function

•  A task cannot complete until all
tasks below it in the tree are
complete (enforced with taskwait)

•  x,y are local, and so by default
they are private to current task

–  must be shared on child tasks so they
don’t create their own firstprivate
copies at this level!

int fib (int n)
{ int x,y;
 if (n < 2) return n;

#pragma omp task shared(x)
 x = fib(n-1);
#pragma omp task shared(y)
 y = fib (n-2);
#pragma omp taskwait
 return (x+y);
}

Int main()
{ int NW = 5000;
 #pragma omp parallel
 {
 #pragma omp single
 fib(NW);
 }
}

Divide and conquer

•  Split the problem into smaller sub-problems; continue until
the sub-problems can be solve directly

n  3 Options:
¨  Do work as you split

into sub-problems
¨  Do work only at the

leaves
¨  Do work as you

recombine

91

92

Exercise: Pi with tasks

•  Consider the program Pi_recur.c. This program uses a
recursive algorithm in integrate the function in the pi program.
– Parallelize this program using OpenMP tasks

#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp single
double omp_get_wtime()
int omp_get_thread_num();
int omp_get_num_threads();

Program: OpenMP tasks
#include <omp.h>
static long num_steps = 100000000;
#define MIN_BLK 10000000
double pi_comp(int Nstart,int Nfinish,double step)
{ int i,iblk;
 double x, sum = 0.0,sum1, sum2;
 if (Nfinish-Nstart < MIN_BLK){
 for (i=Nstart;i< Nfinish; i++){
 x = (i+0.5)*step;
 sum = sum + 4.0/(1.0+x*x);
 }
 }
 else{
 iblk = Nfinish-Nstart;
 #pragma omp task shared(sum1)
 sum1 = pi_comp(Nstart, Nfinish-iblk/2,step);
 #pragma omp task shared(sum2)
 sum2 = pi_comp(Nfinish-iblk/2, Nfinish, step);
 #pragma omp taskwait
 sum = sum1 + sum2;
 }return sum;
} 93

 int main ()
 {
 int i;
 double step, pi, sum;
 step = 1.0/(double) num_steps;
 #pragma omp parallel
 {
 #pragma omp single
 sum =

 pi_comp(0,num_steps,step);
 }
 pi = step * sum;
 }

Results*: pi with tasks

94

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW thread)
Intel® CoreTM i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

•  Original Serial pi program with 100000000 steps ran in 1.83 seconds.

threads 1st SPMD SPMD
critical

PI Loop Pi tasks

1 1.86 1.87 1.91 1.87

2 1.03 1.00 1.02 1.00

3 1.08 0.68 0.80 0.76

4 0.97 0.53 0.68 0.52

95

Using tasks

•  Don’t use tasks for things already well supported by
OpenMP
– e.g. standard do/for loops
– the overhead of using tasks is greater

•  Don’t expect miracles from the runtime
– best results usually obtained where the user controls the

number and granularity of tasks

96

Outline

•  Introduction to OpenMP
•  Creating Threads
•  Synchronization
•  Parallel Loops
•  Data environment
•  Memory model
•  Irregular Parallelism and tasks
•  Recap
•  Beyond the common core:
– Worksharing revisited
– Synchronization: More than you ever wanted to know
– Thread private data
– Thread affinity and data locality

OMP Construct Concepts

#pragma omp parallel parallel region, teams of threads, structured block, interleaved execution
across threads

int omp_get_thread_num()
int omp_get_num_threads()

Create threads with a parallel region and split up the work using the
number of threads and thread ID

double omp_get_wtime() Speedup and Amdahl's law.
False Sharing and other performance issues

setenv OMP_NUM_THREADS N

internal control variables. Setting the default number of threads with an
environment variable

#pragma omp barrier
#pragma omp critical

Synchronization and race conditions. Revisit interleaved execution.

#pragma omp for
#pragma omp parallel for

worksharing, parallel loops, loop carried dependencies

reduction(op:list) reductions of values across a team of threads

schedule(dynamic [,chunk])
schedule (static [,chunk])

Loop schedules, loop overheads and load balance

private(list), firstprivate(list), shared(list) Data environment

nowait disabling implied barriers on workshare constructs, the high cost of
barriers. The flush concept (but not the concept)

#pragma omp single Workshare with a single thread

#pragma omp task
#pragma omp taskwait

tasks including the data environment for tasks.

The OpenMP Common Core: Most OpenMP programs only use these 16 constructs

97

